超快光譜技術(shù)的應(yīng)用及常見的測(cè)量技術(shù)
拓普思實(shí)驗(yàn)室系統(tǒng)
2020-05-04
隨著超快激光器的發(fā)展,有關(guān)超快激光與物質(zhì)相互作用的研究越來(lái)越受到人們的關(guān)注。由于超快光脈沖具有短脈沖和高光強(qiáng)兩個(gè)主要特性,超快光與物質(zhì)的相互作用就形成了超快光譜學(xué)和強(qiáng)場(chǎng)物理兩個(gè)分支。其中,超快光譜學(xué)研究物理的超快光學(xué)特性以及超快光與物質(zhì)的相互作用,主要利用超快光的窄脈沖特性來(lái)研究物質(zhì)隨時(shí)間演化的特性,時(shí)間分辨和實(shí)現(xiàn)相干態(tài)等是其主要特色。
超快光譜學(xué)可以應(yīng)用于物理、化學(xué)、生物、材料、醫(yī)療、能源及環(huán)境等眾多領(lǐng)域。在物理領(lǐng)域,超快光譜還可以應(yīng)用于半導(dǎo)體磁性材料、超導(dǎo)體、絕緣體、復(fù)雜材料、量子結(jié)構(gòu)、納米和表面體系等等。
超快光譜與物質(zhì)相互作用的本質(zhì)是電磁波與物質(zhì)的相互作用。超快光能夠與物質(zhì)中的電荷、晶格、自旋、軌道角動(dòng)量等多個(gè)自由度相互作用,由于超快光可與這些自由度單獨(dú)相互作用,因此,某些時(shí)候可以通過(guò)這些相互作用來(lái)感知、探測(cè)和解釋凝聚態(tài)物質(zhì)內(nèi)部的自身的量子激發(fā)態(tài)之間的相互作用,例如改變外部物理?xiàng)l件(如溫度、磁場(chǎng)、電壓、壓力等)時(shí),通過(guò)感受某一種或兩種元激發(fā)的動(dòng)力學(xué)特性的改變來(lái)感知內(nèi)部的相互作用的改變,從而探測(cè)物質(zhì)內(nèi)部相變的發(fā)生。相互作用大多伴隨著能量的轉(zhuǎn)移,也即非彈性光散射過(guò)程。
在凝聚態(tài)物質(zhì)中,由電磁相互作用的強(qiáng)度和原子間距的尺度所決定的凝聚態(tài)物質(zhì)內(nèi)部的物理過(guò)程,大多數(shù)發(fā)生在fs、ps甚至是ns的時(shí)間尺度上即所謂的超快物理過(guò)程,例如吸收光子后處于激發(fā)態(tài)的載流子的弛豫過(guò)程,自旋相干性的消失,晶格的周期振動(dòng)和衰減等。在凝聚態(tài)物質(zhì)中,每個(gè)原子與大量其他原子相連接著,這提供了大量的衰減渠道,使得處于激發(fā)態(tài)的單個(gè)和集體元激發(fā)會(huì)很快地衰減到基態(tài),從而表現(xiàn)為超快物理過(guò)程。
研究超快物理過(guò)程,目前大多采用超快激光器所發(fā)射的超短激光脈沖串來(lái)實(shí)現(xiàn)。激光器分為兩類:一是連續(xù)波激光器;二是超快激光器。
目前,超快光譜學(xué)的一個(gè)重要特色是時(shí)間分辨。時(shí)間分辨是指物理事件隨時(shí)間的演化過(guò)程在時(shí)間維度上展示出來(lái),其是相對(duì)于時(shí)間積分而言的;由于物質(zhì)總是不能脫離開時(shí)間而存在,一個(gè)可探測(cè)物理量如果不是時(shí)間分辨信號(hào),那么它通常是時(shí)間積分或時(shí)間平均的信號(hào)。通常時(shí)間分辨信號(hào)涉及的時(shí)間尺度比較大,可以從ns到as尺度。
對(duì)應(yīng)于不同時(shí)間尺度上發(fā)生的物理過(guò)程,時(shí)間分辨的探測(cè)技術(shù)也會(huì)有所不同。
(1)在>0.01 s的時(shí)間尺度上發(fā)生的物理事件
用攝像機(jī)記錄下來(lái)
(2)在ms – ns量級(jí)的尺度上發(fā)生的物理過(guò)程
用示波器等進(jìn)行記錄,也可以用計(jì)算機(jī)控對(duì)應(yīng)于不同時(shí)間尺度上發(fā)生的物理過(guò)程,時(shí)間分辨的探測(cè)技術(shù)也會(huì)有所不同。
(1)在>0.01 s的時(shí)間尺度上發(fā)生的物理事件
用攝像機(jī)記錄下來(lái)
(2)在ms – ns量級(jí)的尺度上發(fā)生的物理過(guò)程
用示波器等進(jìn)行記錄,也可以用計(jì)算機(jī)控制的電子學(xué)或光電子學(xué)器件來(lái)進(jìn)行記錄,不過(guò),這些方法往往受限于微觀上電路的RC響應(yīng)時(shí)間常數(shù)。制的電子學(xué)或光電子學(xué)器件來(lái)進(jìn)行記錄,不過(guò),這些方法往往受限于微觀上電路的RC響應(yīng)時(shí)間常數(shù)。
(3)在幾十ps – ns之間的時(shí)間分辨過(guò)程
用專門開發(fā)的電子學(xué)方法進(jìn)行探測(cè)比如時(shí)間相關(guān)單光子計(jì)數(shù)(TCSPC技術(shù))
(4)在fs – ps之間發(fā)生的物理事件
用超快光譜學(xué)的方法來(lái)探測(cè)時(shí)間分辨信號(hào)
從時(shí)間分辨信號(hào)可以直接獲得物理體系隨時(shí)間演化的超快過(guò)程信息,對(duì)于揭示物理機(jī)制起著重要的作用,故時(shí)間分辨對(duì)于超快動(dòng)力學(xué)研究幾乎是不可或缺的。
目前,常見的超快光譜技術(shù)主要有如下幾種:
1、泵浦/抽運(yùn)-探測(cè)超快光譜(pump-probe detection)
2、相干態(tài)的產(chǎn)生和探測(cè)
3、時(shí)間分辨發(fā)光光譜
4、瞬態(tài)吸收近幾年來(lái),隨著固體超快激光器和高速探測(cè)器的發(fā)展,超快光譜技術(shù)得到了飛速的發(fā)展,同時(shí)也加快了與其他技術(shù)的結(jié)合,促進(jìn)了學(xué)科交叉融合。目前,較為常見的結(jié)合技術(shù)有與電子衍射、原子力顯微鏡(AFM)、近場(chǎng)光學(xué)掃描顯微鏡(SNOM)、微波技術(shù)、角分辨光電子能譜、掃描隧道顯微鏡(STM)、電子光束成像等技術(shù)的結(jié)合。這些融合技術(shù)帶來(lái)了新的研究結(jié)果,拓展了超快光譜技術(shù)的應(yīng)用領(lǐng)域。同時(shí),這些融合技術(shù)往往也是其他單一實(shí)驗(yàn)技術(shù)所無(wú)法替代的。光譜
5、時(shí)間分辨四波混頻技術(shù)
6、時(shí)間分辨紅外光譜
7、THz時(shí)域超快光譜
8、X射線超快光譜
補(bǔ)充:
1、原子分子中發(fā)生的大多數(shù)光物理過(guò)程都具有一定的時(shí)間尺度,比如原子核的運(yùn)動(dòng),化學(xué)鍵的扭轉(zhuǎn)等發(fā)生在fs – ps時(shí)間范圍內(nèi);電荷分離和轉(zhuǎn)移、能量傳遞等發(fā)生在fs – ns時(shí)間尺度;發(fā)光材料的熒光壽命一般發(fā)生在ns量級(jí)等。
2、超短脈沖激光激發(fā)物質(zhì)后可以產(chǎn)生豐富的瞬態(tài)產(chǎn)物比如激發(fā)態(tài)分子、中性自由基、正或負(fù)離子型自由基等,穩(wěn)態(tài)測(cè)試方法只能反映整個(gè)過(guò)程的一個(gè)積分效應(yīng),而不能體現(xiàn)過(guò)程是如何隨時(shí)間變化的。時(shí)間分辨的研究則可以深入認(rèn)識(shí)分子本身的性質(zhì)。
3、光脈沖的脈寬在約10 fs以上,其可用于研究涉及外層電子的特性,可以很好地研究涉及固態(tài)物質(zhì)的物理內(nèi)容,這主要是由于固態(tài)物質(zhì)的豐富的物性多由外層電子與體系的相互作用決定;脈寬低于1 fs的光脈沖,稱作阿秒技術(shù),此時(shí)的每個(gè)光脈沖只含有約單個(gè)左右的光波周期。阿秒技術(shù)有助于揭示內(nèi)層電子的量子躍遷動(dòng)力學(xué)過(guò)程,適合于研究原子分子體系。短于10 fs脈沖的光脈沖可用于研究電子的運(yùn)動(dòng),適用于原子體系的研究,比如觀測(cè)原子的外層電子的電離過(guò)程。
4、激光脈沖寬度決定了時(shí)間分辨探測(cè)的時(shí)間分辨率,隨著超短激光脈沖技術(shù)的發(fā)展,激光脈沖的脈寬已經(jīng)縮短到了ps、fs甚至是as量級(jí)。對(duì)于ns和更長(zhǎng)時(shí)間的分辨光譜探測(cè),一般的電子設(shè)備產(chǎn)生的延時(shí)精度及分辨率就可以滿足需要,不過(guò)在ps – fs時(shí)間尺度上,除了條紋相機(jī)能分辨到ps量級(jí)外,其他電子設(shè)備只能分辨到ns量級(jí),要達(dá)到fs量級(jí)的分辨率,只能通過(guò)其他方法來(lái)完成,比如光學(xué)延時(shí)方法,將時(shí)間尺度的問(wèn)題轉(zhuǎn)化為空間尺度的問(wèn)題,使一束光經(jīng)過(guò)電動(dòng)延時(shí)線來(lái)實(shí)現(xiàn)時(shí)間分辨,1 μm的空間精度對(duì)應(yīng)3.3 fs的時(shí)間精度(t=s/c,s是位移臺(tái)的空間精度比如1 μm,c是光速)。